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ABSTRACT 

The application of forward error correction coding to a fast frequency-hopped 

binary frequency-shift keying (FFH/BFSK) noncoherent receiver with self-normalization 

combining under broadband and partial-band jamming is discussed in this thesis. 

The performance of the receiver is examined when data are encoded using Reed- 

Solomon codes, convolutional codes, and concatenated Reed-Solomon and convolutional 

codes, all with hard decision decoding. The effects of the transmission channel is 

considered, and results are derived for a Rayleigh fading channel and Ricean fading 

channels with several different ratios of direct-to-diffuse signal power. Only frequency 

nonselective, slowly fading channels are considered. 

The combination of diversity and forward error correction coding is found to 

improve the performance of the receiver in the presence of both broadband and partial- 

band jamming and optimum codes for each coding scheme are also discussed. 
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i. INTRODUCTION 

A. BACKGROUND 

Digital communication systems nowadays are taking the place of the previous 

analog systems because the tremendous evolution in technological achievements makes it 

not only feasible but necessary. At the same time, the increase in the demands for more 

reliable and complex systems pushes technology to its limits. Digital signals have many 

advantages over analog signals: they suffer less from distortion and interference and can 

easily be reproduced (regenerated) [Ref. 1]; using digital signals, higher data rates can be 

achieved over a bandwidth limited channel; and forward error correction coding 

techniques can be applied. 

Military applications as well as many commercial applications in wireless 

communications are leading research to areas that are new and more efficient. One of 

these areas is the study of the so called spread spectrum (SS) signals. Spread spectrum 

signals are used mainly in communications, but there are other applications of spread 

spectrum, such as to obtain accurate range and velocity measurements in radar and 

navigation [Ref. 2]. 

By definition, spread spectrum modulation uses a transmission bandwidth many 

times greater than the information bandwidth. One consequence of this wide bandwidth is 

that, for some types of spread spectrum signals, the signal spectrum cannot be 

distinguished from the background noise (low-probability-of-detection or LPD signals) 

[Ref. 3]. One important advantage of spread spectrum signals is that it makes possible to 

overcome the effects of interference whether it is intentional (i.e., jamming) or 

unintentional (i.e., from other users of the same channel or due to multipath propagation). 

Message privacy from unintended listeners is achieved due to the pseudo-random pattern 

imposed on the transmitted signal (low-probability-of-intercept or LPI signals) [Ref. 2]. 

Two types of modulation are widely used in digital communication systems with 

spread spectrum signals: phase-shift keying (PSK) and frequency-shift keying (FSK). 



Modern jammers have the capability to copy and reproduce signals that are emitted and in 

this way to contuse the receiver. More sophisticated transmitters can overcome this by 

introducing a pseudo-random or pseudo-noise (PN) sequence in the transmitted signal. 

The notion of pseudo-randomness is that the sequence appears random but can be 

reproduced in the receiver using deterministic means. Since this pattern is known only to 

the receiver and not to the jammer, we expect the system to be more difficult to jam. 

When a PN sequence is used with PSK modulation so that the phase of the signal is shifted 

in a pseudo-random way, the resulting signal is called a direct sequence (DS) spread 

spectrum signal. When it is difficult to maintain phase coherence, noncoherent FSK is used 

and instead of randomly shifting the phase, the carrier frequency of the signal is selected 

according to a pseudo-random pattern. The resulting signal is called a frequency-hopped 

spread spectrum signal. In this case, the available channel bandwidth is divided into 

frequency slots and the transmitter changes (hops) its RF carrier frequency in a pseudo- 

random way according to the output of a PN generator from one slot to another. The most 

commonly used scheme in this category is frequency-hopped noncoherent M-ary FSK 

(FH/MFSK). When one or more symbols is transmitted for a single hop, the system is 

referred to as slow frequency hopped (SFH). On the other hand, when one symbol is 

transmitted on multiple hops, the system is referred to as fast frequency-hopped (FFH) 

[Ref 4]. Other possible SS systems are time hopping (TH) or some hybrid combinations 

such as DS/FH. DS and FH are currently the most commonly used spread spectrum signal 

types. 

An important aspect in a communication system is the transmission channel. The 

classical additive white Gaussian channel (AWGN) does not model all the existing channel 

types. For many military and commercial communication systems, the transmission channel 

is more complex as the physical characteristics of the media are continuously changing. 

These channels have randomly time-variant impulse responses; and as a result, if the same 

signal is transmitted in two different time intervals the channel will affect the signal 

differently. Especially in the presence of multiple propagation paths with time-variant 

propagation delays and attenuation factors, the resulting signal amplitude through the 



different paths is sometimes large and other times small. These amplitude variations are 

called signal fading, and the corresponding channels are called fading multipath channels. 

In many cases the signaling interval is smaller than the coherence time of the channel, and 

the channel attenuation can be considered to be fixed during the signaling interval. These 

type of channels are defined as slowly fading channels. When the coherence bandwidth of 

the channel is smaller than the bandwidth of the transmitted signal, the signal is severely 

distorted by the channel. The channel in this case is characterized as frequency-selective in 

contrast to a frequency-nonselective channel where the coherence bandwidth of the 

channel is large compared to the bandwidth of the transmitted signal [Ref. 2]. In this 

thesis, only slowly fading, frequency-nonselective channels are considered. A common 

fading multipath channel in communications is modeled as a Rayleigh fading channel. In 

some other applications, like satellite communications, there is a direct path between the 

transmitter and the receiver that is added to the multipath components. This type of 

channel is modeled as Ricean fading channel. 

The main problem when transmitting over a fading channel is that in order to 

achieve good performance (low probability of symbol error) the transmitter has to use a 

large amount of power. In most cases this is neither possible nor desirable. One way to 

overcome this problem is the use of redundancy that can be provided either by diversity 

techniques [Ref. 2] or by the use of forward error correction coding [Ref. 3], 

When the same information signal is transmitted several times over independently 

fading channels it is unlikely that all the components will fade simultaneously at the 

receiver. This is the basic concept of diversity techniques. There are several methods used 

in practice, but the most widely used are time-diversity, frequency diversity, and space 

diversity. In time diversity the same information signal is transmitted in different time slots 

where the separation between time slots equals or exceeds the coherence time of the 

channel. When the same information signal is transmitted on different carriers and the 

separation between successive carriers equals or exceeds the coherence bandwidth of the 

channel, the technique is referred as frequency diversity [Ref. 2]. In space or antenna 

diversity, multiple receiving (and possibly multiple transmitting) antennas are spaced with 



a separation of least ten wavelengths. In this way the received signals in the spaced 

antennas fade independently [Ref. 2], [Ref. 5]. 

As diversity is a sort of repetition coding, it is reasonable to expect that the use of 

forward error correcting coding (FEC) will further improve the performance of a system. 

Actually the use of FEC can improve the performance not only of fixed amplitude and 

phase channels but of fading channels as well [Ref. 3]. Theoretically, if the information 

data rate is less than the channel capacity, it is possible to achieve as small a probability of 

symbol error as desired with the use of the proper coding techniques. The critical 

limitation is that the resulting system may be too expensive to implement. Building systems 

that are both cost effective and efficient is a research area of great interest. 

The two main types of codes used in practice are block codes and tree codes. In 

block codes, k information symbols are mapped into an n symbol block that depends only 

upon the specific k symbols and no others. The encoder is characterized as memoryless. 

On the other hand, the encoder for a tree code maps k information symbols into an n 

symbol sequence that depends on the current k input symbols as well as on v preceding 

input symbols. The encoder in this case has memory [Ref. 6]. On the receiver end, the 

decoder is a device that estimates the most likely transmitted code word based on the 

received one. For the decoding of block codes, procedures are based on elementary code 

structure or the algebraic structure of certain codes (i.e., Reed-Solomon decoding). 

Decoding of tree codes may be achieved using the Viterbi algorithm (maximum-likelihood 

decoding) [Ref. 7], sequential decoding algorithms, or threshold decoding. If binary 

quantization is used at the output of the decoder, it is referred to as hard decision 

decoding in contrast to soft decision decoding when m-bit quantization is used 

(with m>2). 

When very long codes with large error correction capability are desired, multiple 

levels of coding may be used. This is referred to as concatenated coding. In the most 

preferred scheme, two levels of coding are used. One of the codes is usually nonbinary 

and is called the outer code and the other is binary and is called the inner code. Although 

any kind of codes may be used as inner and outer codes in combination of hard or soft 



decision decoding, most of the time Reed-Solomon codes are preferred as outer codes. 

Systems with Viterbi-decoded convolutional inner codes with relatively short constraint 

length (<10) were shown in [Ref. 8] to have good performance. 

B. OBJECTIVE 

In this thesis, the coded performance of a fast frequency-hopped binary frequency 

shift keying (FFH/BFSK) non-coherent receiver with self-normalization combining is 

examined. Self-normalization combining is a technique used to minimize performance 

degradation due to partial-band interference. The uncoded performance of the receiver has 

been previously examined [Ref. 9] and [Ref. 10]. The effects of the application of forward 

error correction coding in combination with frequency diversity for the specific receiver is 

here investigated. 

Three different types of codes with hard decision decoding are evaluated to find 

the optimum coding scheme. First of all, Reed-Solomon (RS) codes of different code rates 

are examined in Chapter III. The application of Reed-Solomon codes in frequency-hop 

communications has been previously studied [Ref. 11]. The performance of convolutional 

codes of various code rates and constraint lengths and convolutional codes concatenated 

with RS codes is evaluated in Chapter IV and Chapter V, respectively. The coded 

performance is compared with the uncoded for the optimum codes found in each case. 

Results are obtained for partial-band and broadband interference and for several 

types of transmission channels: a Rayleigh fading channel and Ricean fading channels with 

several different ratios of direct-to-diffuse signal power. 





IT. PERFORMANCE ANALYSIS OF FAST FREQUENCY-HOPPED BFSK WITH 

SELF-NORMALIZATION COMBINING IN A FADING CHANNEL WITH 

PARTIAL-BAND INTERFERENCE AND WITHOUT CODING 

The performance of a fast frequency-hopped BFSK receiver with self- 

normalization combining in a fading channel with partial-band interference has been 

previously examined [Ref. 9]. The transmitter is assumed to send L hops per data bit. At 

the receiver (Fig. 1) the dehopped signals are demodulated by a bandpass filter with 

equivalent noise bandwidth of B Hz followed by a quadratic detector. Self-normalization 

combining is used to nonlinearly combine the outputs of the quadratic detectors of the two 

branches of the BFSK demodulator to form the L diversity signals which are then 

combined to obtain the decision statistics [Ref. 9]. 

The channel for each hop is modeled as a frequency-nonselective, slowly fading 

Ricean process. This means that we consider the signal bandwidth to be much smaller than 

the coherence bandwidth of the channel and the hop rate much greater that the Doppler 

spread of the channel [Ref. 2]. In this case the dehopped signal can be modeled as the sum 

of a nonfaded (direct) and a Rayleigh-faded (diffuse) component. 

Interference is considered to be both partial-band (caused by a jammer or any other 

source of narrowband interference) and wideband interference (i.e., thermal noise). Partial- 

band interference is modeled as additive Gaussian noise with power spectral density 

Nlr=r'^ m 

where     y   is the fraction of the bandwidth being jammed and 

N//2 is the average interference noise power spectral density over the 

entire bandwidth. 

Wideband interference is modeled as additive white Gaussian noise with noise 

power spectral density No/2. 

7 



The noise power for each hop k of a signal is 

with probability y when interference is present and 

aK
2=N0B 

with probability 1-^when interference is not present. 

For a bit interval duration of Tb seconds, the bit rate is Rb=l/Tb. The duration of 

the hop interval is Tb=Tb/L for L* order diversity, and the hop rate is Rb=l/Tb=L Rb. If .Sis 

the average signal power, then 

S = a2+2a2 (3) 

where     a2 is the average power of the direct component of the signal and 

2<f is the average power of the diffuse component of the signal. 

In this case the average energy per hop is Eb=STb and the average energy per bit is 

Eb=LEh. The signal power-to-noise power ratio is 

S      Eb-Rb       EbRb 

<JK
2
     NT-B     L-NTB 

where     NT/2 is the power spectral density of the total noise power. 

(4) 



Since there is no other modulation scheme, the minimum equivalent noise 

bandwidth of the signal is equal to the hop rate we can use B=Rj, [Ref. 9], and (4) can be 

rewritten as: 

S       Eh        Eb 

aK
l     NT     L-NT 

A. ANALYSIS 

The probability density function fx  of the random variable Xik that models the 

output of the quadratic detector assuming that the signal is present in branch 1 and the 

probability density function fx   of the random variable X2k that models the output of 

branch 2 that contains no signal of the BFSK demodulator are given in [Ref. 9] as: 

/ xlt + 2-a7 f 
2   (r,2+2ff2 J      T 

a\^'XU 
v   M,J= ;—e I 

-Yli      Xk       2-(a/+2a2) &r +2a V" K 

■u(xn.)      (6) 

fx2i(Xuc)=- T'eKa''J-u(x2k) 0) 
2-<j,. 

where   /<?(.) is the modified Bessel function of zero order and 

u (.) is the unit step function. 

The normalized random variable Zik, i=l,2 is given by 



x 
Z;k = "  (8) 

X    -J- X 

and the probability density function of Zlk is [Ref 9]: 

(9) 
Ar       0< zu <1 

where  pK=^/a^ is the signal-to-noise ratio of the direct component of hop irof a bit and 

^K-2<^IUK is the signal-to-noise ratio of the diffuse component of hop £of a bit. 

If we define as X=px/^i'l2<? the ratio of the direct-to-diffuse power components, 

then (8) can be rewritten as a function of A as: 

^q-^+(l+C)-[l+^-(l-^)]    [ij$5 

(10) 

Ar       0< zu <1 

Since p^ilo* and <^K=2c^/a^, then from (5): 

a2 +2<72       5 £ 

aK
2     L-NT 

/>,+&= — = —= -T7T <n) 

This implies: 

10 



$*■ L-Nr      "A  x      '     L-Nr 

and in turn: 

,       1     Eb 
1           Eb/N0 

i*K    1+Ä LNT (\+X)L      Eb/N0   _, 
1+               / f.r    T 

(13) 

B. PROBABILITY OF BIT ERROR 

The conditional probability density function for Zj given that / hops of a bit have 

interference has been derived in [Ref. 9] as: 

where fz ^{zlk) is the probability density function of Zik assuming that hop koia bit 

has interference, fz ^\zx^) is the probability density function of Zlk assuming that hop k 

of a bit has no interference, and ® / represents an i-fold convolution. 

The conditional bit error probability given that / hops of a bit have interference is 

derived in [Ref. 9] as: 

L/l 

and the uncoded bit error probability for the receiver is 

11 



ph-t\LXr-i}-r)Li-ph{i) 06) 

In the general case f^(40 and Pb(i) must each be evaluated numerically. 

In general, self-normalization combining with diversity is insufficient to reduce the 

probability of bit error to acceptable levels. Generally, some sort of forward error 

correction coding is also necessary. In the next chapter, the performance of the fast 

frequency-hopped BFSK receiver with self-normalization combining and Reed-Solomon 

coding is examined. Convolutional and concatenated codes are examined in later chapters. 

12 



III. PERFORMANCE ANALYSIS OF FAST FREQUENCY-HOPPED BFSK 

WITH SELF-NORMALIZATION COMBINING IN A FADING CHANNEL WITH 

PARTIAL-BAND INTERFERENCE AND WITH REED-SOLOMON CODING 

For the last thirty years, Reed-Solomon codes have played a very important role in 

numerous engineering designs and implementations. Applications of Reed-Solomon codes 

cover a large spectrum of areas from entertainment (i.e., compact disk players) to space 

exploration (i.e., the Voyager mission). In the development of digital communication 

systems and especially in spread spectrum systems, Reed-Solomon codes are a basic tool 

that provides performance improvement and thus more efficient and reliable systems 

[Ref. 11]. One advantage of Reed-Solomon codes is that they are a family of nonbinary 

codes. As such, they work well with modulation formats designed for power-limited 

channels such as MFSK. 

The original construction of Reed-Solomon codes was through the use of finite 

field arithmetic, also referred to as Galois fields (GF). Two arithmetic operations, addition 

and multiplication, are defined on the elements of a finite field. The number q of elements 

in a finite field GF(q) must be in the form jf where p is a prime integer and m is a positive 

integer. In GF(q) there is at least one element and q~\ nonzero elements. 

If k information symbols io,ii,...ik-i taken from GF(q) are used to construct an 

information polynomial I(x)=i0+iix+- ■ ■ +i\--jXk'J, then a Reed-Solomon code word is formed 

by evaluating J{x) at each of the q elements in GF(q). Using all possible values, a complete 

set of q* code words can be constructed to form a Reed-Solomon code. Since the sum of 

any two Reed-Solomon code words is also a code word, Reed-Solomon codes are linear 

codes. The number k of information symbols and the length n=q characterize a Reed- 

Solomon code as an (n,k) code. 

For Reed-Solomon codes with code words of length n symbols, each with k 

information symbols, the number of errors t that the code can correct and the minimum 

distance of the code dmm are given as [Ref. 2]: 

13 



k=\,3,...,n-2 (]7) 

n-k 
t (18) 

2 

dmia = n-k+\ 09) 

There are several other approaches to the construction of Reed-Solomon codes 

such as the GF Fourier transform approach, but the most popular nowadays is the 

generator polynomial approach [Ref. 11]. 

A code is said to be cyclic if any cyclic shift of a code word c=c0,ci,...,cn.u results 

in a code word (i.e., ch...,cn.h c0). An (n,k) cyclic code can be represented in polynomial 

form {c{x)^c0+Cix+...+cn-i^' ) and: 

cix)=Kx)^x) (20) 

where   I(x) is the information polynomial and g(x)=go+gjX+...+gs-iX
a'1 is the generator 

polynomial. 

Cyclic Reed-Solomon codes have length n=q-\, one less than the original 

construction. As an example, in GF(32) the cyclic Reed-Solomon code will have a length 

ZF=31. The generator polynomial approach in the construction of Reed-Solomon codes is 

used in this thesis. 

The performance of a fast frequency-hopped BFSK receiver with self- 

normalization combining in a fading channel with partial band interference and with Reed- 

Solomon error correction coding is now examined. 

In forward error correction coding, n coded symbols are transmitted for k 

information symbols. In order to maintain a fixed data rate, 

»■i; = *-7; =>*=£ = £ (2i) 
/ n 

14 



where  Th is the bit duration, 

Tc is the coded bit duration, 

Rb is the bit rate, 

Rc is the coded bit rate and 

T is the code rate k/n. 

For the analysis that follows it is assumed that the transmitted power P as well as 

the bit rate Rb are fixed. In this case, Eb is also fixed since: 

P = EbRb 
(22) 

So for variable code rate r=k/n, the coded bit energy Ec will vary for constant 

transmitted power since: 

P = Eb.Rb=Ee.Re^>Ee=r.Eb (23) 

The performance of this coding/modulation scheme with hard decision decoding is 

given analytically in [Ref. 2] as: 

M 

•2-(M-l) 

f& 1-z-i:i-^-(i-^r n i=M \U 
(24) 

For the binary case with M=2 (20) is reduced to 

1   ^     (n 

/=/+! 
*-~z<-nv-(»-Ar (25) 

15 



where ps is the uncoded bit error probability given by (16). 

Using (23), the signal-to-noise ratio in the uncoded symbol error probability ps 

given by (16) will be scaled by the code rate r=k/n. 

The performance of the fast frequency-hopped BFSK receiver with self- 

normalization combining in a fading channel using convolutional codes is examined in the 

next chapter. 

16 



IV. PERFORMANCE ANALYSIS OF FAST FREQUENCY-HOPPED BFSK 

WITH SELF-NORMALIZATION COMBINING IN A FADING CHANNEL WITH 

PARTIAL-BAND INTERFERENCE AND WITH CONVOLUTIONAL CODING 

The Reed-Solomon codes studied in the previous chapter are based on algebraic 

properties and consist of fixed length independent code words. Convolutional codes, 

studied in this chapter, are different because information symbols are coded based on the 

current data bits as well as on a number of preceding bits. Algebraic techniques used for 

error correction in block codes are not applicable in this case, and the maximum-likelihood 

decoding algorithm (Viterbi algorithm) is widely used instead. Convolutional codes have 

the advantages of combining relatively simple implementation and good coding gains. 

A convolutional encoder for a rate k/n code can be implemented using k shift 

registers and n modulo-2 adders. Since the set of n coded bits is determined by the k 

information bits and k(v-l) preceding bits, at least one of the k shift registers must have 

v-1 stages. A convolutional code is characterized by the code rate k/n and a parameter 

called the constraint length of the convolutional code. In some references the parameter v 

is referred to as the constraint length of the code. In other references, the constraint length 

is defined as the number of k-bit stages of the shift register [Ref. 2], or as the maximum 

number of coded bits that can be affected by a single information bit (v'=nv) [Ref. 13], or 

as the length of the shift register (vc=v-T) [Ref. 6]. For the purposes of this thesis, the 

latter definition will be used. 

To describe a convolutional code one can use the generator matrix. The generator 

matrix G consists of the generator polynomials g(x)Xhal describe the connections between 

the shift register stages and the modulo-2 adders. The code word C corresponding to any 

information vector I is obtained by multiplying the information vector with the generator 

matrix [Ref. 6]: 

C=ITG (26) 

17 



As an example, for a rate 1/2 convolutional code the generator vectors are 

g,= [l 0 1 0 0...] and g2= [l 1 1 0 0...] with corresponding generator polynomials 

gj'x )=]+0x +\x2  and g2(x)=\+\x +lx2. The resulting code word in this case is 

C=[c,(x) c2(x)] with c,(x)=l(x)g,(x) and c2(x) = l(x)g2(x). 

Another way to describe a convolutional encoder is as a finite-state machine with 

2V states, where v is the constraint length of the code. To better explain this, the example 

of a rate 1/2 convolutional code with constraint length of v=2 is used. The equivalent 

signal flow graph for the specific code is given in Fig. 2 where S0,Sj,S2, and 5? are the 

states of the finite-state machine [Ref. 6]. 

In this flow graph, each branch is labeled with IT, KT', and L where w is the 

Hamming distance of the encoder output corresponding to the branch, wl is the weight of 

the input sequence of the branch, and L is the length of the branch. The Hamming distance 

is the number of coordinates in which two code words differ, and weight is the number of 

nonzero elements of a code word. The minimum distance between any two distinct code 

words is called the free distance df. 

Using Mason's gain formula from the theory of signal flow graphs, the transfer 

function T(D,L,N) can be obtained. The total information weight wj of all paths of weight 

j can be calculated by differentiating the transfer function T(D,L,N) with respect to A^and 

setting N=\ [Ref. 6]: 

dT{p,L,N) 
dN 

N=\        J 

Y.wpj (27) 
7=0 

Using the Viterbi decoding algorithm and hard decision decoding, we have the 

probability that an incorrect path will be selected in [Ref. 2]: 
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r,= T\dj]p^-pf' dr ■ d 

dr-.-'-— 
2 

(28) 

if dis odd, and 

Z iyw dr-d     1 fdf) 
+ 2{d) (M (29) 

if is dis even. In (28) and (29), p is the uncoded bit error probability of a fast frequency- 

hopped BFSK receiver with self-normalization combining in a fading channel with partial- 

band interference and is given by (16) for this thesis. 

The union bound for the coded bit error probability is given in [Ref. 2] as: 

j=df 

(30) 

where Pj is given by (28) and (29) and the weight structure wj is obtained from (27). The 

weight structure is given in [Ref. 6] for codes of different rates and constraint lengths. 

The assumption made in Chapter V, that the transmitted power as well as the bit 

rate are fixed, is made in this case too. So, using (23), the signal-to-noise ratio in the 

uncoded symbol error probability is scaled by the code rate R=k/n. 

In the next chapter, the performance of the fast frequency-hopped BFSK receiver 

with self-normalization combining in a fading channel using concatenated codes is 

examined. 
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V. PERFORMANCE ANALYSIS OF FAST FREQUENCY-HOPPED BFSK WITH 

SELF-NORMALIZATION COMBINING IN A FADING CHANNEL WITH 

PARTIAL-BAND INTERFERENCE AND WITH CONCATENATED CODING 

Concatenated coding with Reed-Solomon codes as outer codes and convolutional 

codes as inner codes are discussed in this chapter. The nonbinary outer code has a code 

rate R0=k</n0, and the binary inner code has a code rate R/=k/n;. The resulting code has a 

length of n=n0n]-, k information bits with k=kjch and code rate R=R0Rr=k0k/n0nJ. An 

encoding-decoding scheme for concatenated codes is shown in Fig. 3 where the 

combination of inner encoder, channel, and inner decoder is called the superchannel. 

In the transmitter, the k information bits are grouped into k0 symbols each one 

consisting of k; bits. Then the outer encoder encodes the k0 symbols into n0 symbols, each 

one consisting of k,- bits. Each of these symbols are further encoded by the inner encoder 

into a binary convolutional code of length in. 

At the receiver, the inner decoder uses hard decision decoding to regroup the 

received bits into groups of n,- bits that correspond to a convolutional code word. After 

this decision, the inner decoder makes a decision on the ks information bits (that form one 

symbol of the Reed-Solomon code) using the Viterbi decoding algorithm. In this way, the 

beginning of each Reed-Solomon code symbol is determined. Then the outer decoder 

makes a hard decision, correcting as many symbol errors as possible. 

Since the inner decoder performs hard decision decoding for a binary convolutional 

code, the union bound for the coded bit channel transition probability is the one given in 

(30) as: 

j=df 

where Pj is given by (28) and (29) and the weight structure wj is found in [Ref. 6] for 

codes of different rates and constraint lengths. 
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The symbol channel transition probability P, at the input of the Reed-Solomon 

decoder is given as a function of P, as 

J>l-(1-Jtf (31) 

where 2m-l= n0. and n0 is the length of the Reed-Solomon code used as outer code. 

The union bound for the bit error probability at the output of the outer (Reed- 

Solomon) decoder is given in [Ref. 2]-[Ref 6] as 

(32) 

D -k 
where   Ps is given by (31), and t = —     is the number of errors the Reed-Solomon 

code can correct. 

Given that 2'" -1= no and 2m_1 = ^—, (32) can be rewritten as: 

Bn+l^   . ̂  

In p^^H-Xj ;p.jb-p.r' (33) 
o    j=t+l \J J 

The assumption made in Chapter V that the transmitted power as well as the bit 

rate are fixed is made in this case too. So, using (23), the signal-to-noise ratio in the 

uncoded symbol error probability is scaled by the code rate R=k0k/nonj. 
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VI. NUMERICAL RESULTS 

From the analysis performed in [Ref. 9] for the uncoded performance of fast 

frequency-hopped BFSK receiver with self-normalization combining in a fading channel 

with partial-band interference, it is clear that for a relatively large number of diversity 

levels (L>3) worst case performance (assuming the same jammer power for both 

broadband and partial-band cases) corresponds to broadband interference (i.e., the whole 

bandwidth is jammed) or, equivalently, when all hops of a bit are jammed (y=l or i=L 

respectively). This assumption has been made for the purposes of the numerical analysis 

of the coded performance of the system, and a diversity level of L=4 has been considered. 

The probability of bit error as a function of the bit energy-to-interference noise density 

ratio Eb/Ni has been examined for Reed-Solomon codes of length n=7,15, and 31, 

convolutional codes of rate 1/2 and 1/3, and concatenated codes with a convolutional code 

of rate 3/4 and constraint length v=8 used as inner code and various length Reed- 

Solomon codes used as outer codes. The ratio of bit energy-to-thermal noise density Et/N0 

is taken to be 13.35 dB in the first two cases and 18 dB in the study of concatenated 

codes. This value of Ej/No corresponds to Pb=10"5 when there is no fading and L=l 

[Ref. 9]. 

The effect of the channel for a number of different fading cases is examined. 

Results are derived for a very strong (a2/2o2=100), a strong (a2/2a2=20), a relatively 

strong (a2/2o2=10), and an average (a2/2c2=5) direct signal as well as for a Rayleigh 

channel model (a2/2a2=0). 

A. REED-SOLOMON CODING 

The performance of systems using Reed-Solomon codes of length n=7 for the 

different channel models is shown in Figs. 3-6. In all cases, if Eb/Ni exceeds a threshold of 

approximately 6 dB, then the code RS(7,5) has better performance than the others 
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( RS(7.1) and RS(7.3) )  The performance is better in the presence of a direct signal and 

improves more as the direct signal becomes stronger 

Similar results are obtained for codes of length n= 15 as can be seen in Figs 7-9. 

For Eb/Ni greater than approximately 9 dB. the code (15,7) for the Rayleigh channel and 

(15,9) for the Ricean channels outperforms the other codes of the same length The 

presence of the direct signal gives the opportunity to use a slightly higher rate code (15,9) 

than in the Rayleigh case. Based on the fact that in the absence of a direct component the 

two codes have almost the same performance (Fig. 7), we can argue that in all cases the 

(15,9) code gives the optimum performance compared with codes of the same length. 

Among all codes with length n=31, for a Rayleigh channel model the (31,15) 

code has the best performance (Fig. 10). To achieve this improvement, the ratio E,/N, 

must exceed approximately 9 dB. In the presence of an increasingly strong direct signal, 

hieher rate codes can be used (Figs. 11-12) to improve performance. For a2/2c2=5, the 

(31,17) code is best; but as the direct signal becomes stronger, the (31,19) code is 

optimum. When we further increase the direct signal to a2/2c2=20 (Fig. 13) and 

a2/2o2=100 (Fig. 14), there is no higher rate code that outperforms (31,19). This leads to 

the conclusion that the performance of the system is limited by a code rate of about 2/3. 

For error correction codes it seems reasonable that the redundancy provided by 

the parity bits improves the performance of any system. This means that we expect that the 

fewer the information symbols used in a code word, the better the performance. This is not 

always the case. When the transmitted power and the bit rate are fixed, the bit energy is 

constant, but the coded bit energy increases as we increase the number of information 

symbols. This increase in coded bit energy can, in some circumstances, overcome the 

advantage that additional redundant bits provide; giving higher rate codes with better 

performance. 

In Figs. 15-17, the performance of optimum codes of different lengths is 

compared with uncoded performance for the three different channel models. When Eb/Ni 

exceeds approximately 9-10 dB, the coded performance is much better than the uncoded. 

It is of note that with an increase in coded bit energy, longer codes outperform shorter 
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ones and the probability of bit error for a specific case (a2/2c2=10) can reach Pb=10"5 with 

Eb/Ni=18 dB using a (31,19) Reed-Solomon code. 

In Figs. 18-19 the performance of optimum Reed-Solomon codes of length 7,15, 

and 31 is examined in the presence of partial-band interference and compared with 

uncoded performance. As in the study of the uncoded case [Ref. 9], the smaller the 

fraction of the bandwidth being jammed, the better the performance of the system 

assuming identical jamming power. Results were derived for y=0.1 and y=0.01 in a 

Rayleigh channel (Fig. 18) and for y=0.1 in a Ricean channel with a2/2a2=10 (Fig. 19). As 

shown in Fig. 18, the performance of the system reaches its asymptotic limit for Eb/Ni>30 

dB no matter what fraction of the bandwidth is jammed and for all coded and uncoded 

cases. 

B. CONVOLUTIONAL CODING 

The performance of the system with convolutional codes of rates 1/2 and 1/3 and 

constraint lengths of v=6 and n=7 for three different channel models in broadband jamming 

is shown in Figs. 20-22. In the case of a Rayleigh fading channel (Fig. 20), codes of rate 

1/3 perform better than codes of rate 1/2 with any constraint length. For a direct 

component, Figs. 21-22, codes of rate 1/2 with constraint length v=7 perform better than 

codes of rate 1/3. Hence, over Ricean channels higher rate codes are advantageous. 

In Fig.23 a comparison of the code of rate 1/2 and constraint length of v=7 with 

the uncoded performance for a Rayleigh channel is made. When Et/Ni is greater than 

approximately 16 dB, coding improves performance as compared to uncoded 

performance. 

The performance of codes of rate 1/2 and constraint lengths of v=5,6, and 7 are 

compared with the uncoded performance for a Ricean channel with a2/2o2=5 in Fig. 24. 

When Eb/Ni is greater than 15 dB, coded performance is better than the uncoded. In this 

case the code with constraint length v=7 has much better performance than the other two 

codes examined and is clearly preferable. 
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Similar results are obtained from the comparison of the performance of codes of 

rate 1/2 and constraint lengths of v=5,6, and 7 with the uncoded performance for a Ricean 

channel with a2/2o2=10, shown in Fig. 25. For Eb/Ni greater than approximately 15 dB, 

coded performance is better than uncoded. Again in this case, the code with constraint 

length v=7 has much better performance than the other two codes examined and is clearly 

preferable. 

The performance of the system in the presence of partial-band jamming with 7=0.1 

is examined in Figs. 26-28 for three different fading cases. In all cases coded performance 

is better than uncoded. This especially is true in the case of a Rayleigh fading channel 

(Fig. 26) where the code with constraint length v=7 clearly outperforms the other codes 

with the same rate of 1/3 and smaller constraint length. For Ricean fading channels 

(Figs. 27-28), the code with constraint length v=7 is still the optimum compared to other 

codes with the same rate of 1/2 and smaller constraint lengths. 

C. CONCATENATED CODING 

The performance of the system with concatenated codes is now examined. A 

convolutional code of rate 3/4 and constraint length of v=8 is used as the inner code. 

Various Reed-Solomon codes are used as outer codes so that the overall code rate is 

approximately 1/2. Since the probability of bit error is calculated using union bounds for 

both the inner and the outer codes, the ratio of bit energy-to-thermal noise Et/No is taken 

to be 18 dB to resolve numerical problems in the analysis. The probability of bit error as a 

function of the bit-to-interference noise energy ratio Ei/Nj is examined for the three 

different cases of fading channels. 

In Figs. 29-30, the performance of the system using Reed-Solomon codes of length 

15 and 31 is examined for a Rayleigh fading channel and broadband interference. 

Concatenated codes with overall rate of approximately 0.55 give the best performance in 

both cases. 

For Ricean fading channels with broadband interference, similar results are 

obtained (Figs. 31-34). The performance of the system using Reed-Solomon codes of 
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length 15 and 31 in a Ricean fading channel with a2/2o2=5 is shown in Figs. 31-32. Using a 

(15,11) Reed-Solomon code, we obtain a probability of bit error of 10"6 with Eb/Ni=16 dB 

(Fig. 31). With the same Eb/Nf=16 dB, a probability of bit error of 10"7is obtained using a 

(31,23) Reed-Solomon code (Fig. 32). As the direct component becomes stronger 

(a2/2c2=10), the same probabilities of bit error can be obtained with a slightly less 

Eb/Ni=15 dB and the same outer codes (Fig. 33-34). 

A comparison between concatenated codes with the same inner code and different 

outer codes, but with a similar overall code rate of about 0.55, is shown in Figs. 35-38 for 

different fading channels and broadband interference. As expected, longer outer codes 

yield better performance. From this point of view, it is not possible to define an optimum 

code as performance is dependent on the length of the code. An outer (31,23) Reed- 

Solomon code gives much better performance than either an outer (15,11) or a (7,5) 

Reed-Solomon code for a Rayleigh fading channel (Fig. 35). A probability of bit error of 

10"6 can be obtained with almost 4 dB less in Eb/Ni if an outer (31,23) Reed-Solomon code 

is used instead of an outer (15,11) Reed-Solomon code. 

For Ricean fading channels (Fig. 36-37), the improvement in Eb/Ni is less than 2 

dB for the same probability of bit error of 10"6 if an outer (31,23) Reed-Solomon code is 

used instead of an outer (15,11) Reed-Solomon code. 

A comparison between the performance of a (31,15) Reed-Solomon code (that is 

the optimum Reed-Solomon code in this case) and concatenated codes of rate almost 1/2 

is made in Fig. 35 for a Rayleigh fading channel and broadband interference. The use of a 

concatenated code with an outer (31,23) Reed-Solomon code can give a probability of bit 

error of 10"6 with almost 4 dB less Eb/Ni than the(31,15) Reed-Solomon code alone. 

In the presence of a direct component (Figs. 36-37), the use of concatenated codes 

clearly outperforms the (31,17) Reed-Solomon code (that is the optimum Reed-Solomon 

code in this case) and it is obviously a better choice. 

Concatenated codes with outer Reed-Solomon codes of length n =31 have been 

studied in this thesis for theoretical purposes. In practice an outer extended Reed-Solomon 
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code of length n =33 must be used in combination with the rate 3/4 convolutional inner 

code in order to resolve synchronization problems. 
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VII. CONCLUSIONS 

An analvsis has been presented of the uncoded and coded performance of fast 

frequency-hopped BFSK receiver with self-normalization combining in a fading channel 

with partial-band interference. Previously derived expressions [Ref. 9] and [Ref. 2] have 

been used; and the performance of such a system has been examined for Reed-Solomon 

codes, convolutional codes, and concatenated codes, all with hard decision decoding, for 

different channel types and both broadband and partial-band interference. 

The application of forward error correction coding improves the performance of 

such a system and optimum codes have been obtained. The optimum Reed-Solomon codes 

are consistent with the optimum codes obtained in [Ref. 12], where the coded 

performance for M-ary FSK modulation in fading channels for a conventional receiver has 

been examined 

In the analysis performed, the transmitted power and the bit rate are kept fixed 

and the bit energy is considered to be constant. As a result, an increase in the number of 

information symbols per code word increases the coded bit energy as well. The increase in 

coded bit energy allows the use of higher rate codes with better performance in some 

cases, as it overcomes the advantage of the better error correction that additional 

redundant bits provide to lower rate codes. 

With Reed-Solomon coding, codes of code rates of almost 2/3 are found to give 

the best performance in every case examined. Receiver performance is dramatically 

increased  using Reed-Solomon  codes  of this  rate  in the presence  of partial-band 

interference. 

Convolutional codes of rates 1/2 and 1/3. also improve the performance of the 

receiver compared to the uncoded performance in all cases, but the rates of the codes that 

can be used and the probabilities of bit error obtained are inferior to those of Reed- 

Solomon codes. 

Concatenated codes with convolutional inner codes, Reed-Solomon outer codes, 

and overall rate of approximately 1/2 have also been examined. The performance of the 
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system using concatenated coding dramatically improves in all cases. Probability ot bit 

error as low as 10"6 or 10"7 can be obtained. Concatenated codes of relatively small length 

are found to outperform Reed-Solomon codes in every case. 

In conclusion, the application of forward error correction coding in systems with 

diversity improves the performance of the system and should be used if possible 

Concatenated codes give the best performance as compared to Reed-Solomon and 

convolutional codes of similar code rates, especially for Rayleigh fading channels with 

broadband interference (the worst case examined). In the presence of partial-band 

interference, Reed-Solomon codes have good performance and may be applied if the use 

of concatenated codes is not possible or desired. 
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Figure 16. Optimum Reed-Solomon codes of length n=7,15,31 and uncoded 
performance comparison for a Ricean fading channel (a~/2cr=5) with 
diversity L=4? and broadband interference. 
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Figure 17. Optimum Reed-Solomon codes of length n=7,15,31 and uncoded 
performance comparison for a Ricean fading channel (a"/2cr=10) with 
diversity L=4, and broadband interference. 
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Figure 18. Optimum Reed-Solomon codes of length n=7,15,31 and uncoded 
performance comparison for a Rayleigh fading channel (a /2cT=0) with 
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Figure 19. Optimum Reed-Solomon codes of length n=7,15,31 and uncoded 
performance comparison for a Ricean fading channel (a72cr=10) with 
diversity L=4, and partial-band interference (y=0.1). 
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Figure 20. Performance of a fast frequency-hopped BFSK receiver with self- 
normalization combining in a Rayleigh fading channel (a2/2(52=0) 
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Figure 22. Performance of a fast frequency-hopped BFSK receiver with self- 
normalization combining in a Ricean fading channel (a72cr=10) 
with convolutional coding, diversity L=4, and broadband interference. 
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Figure 23. Optimum convolutional code of rate 1/2 and uncoded performance 
comparison for a Rayleigh fading channel (a^o^O) with diversity 
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Figure 24. Optimum convolutional codes of rate 1/2 and uncoded performance 
comparison for a Ricean fading channel (a2/2cr=5) with diversity 
L=4, and broadband interference. 
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Figure 25. Optimum convolutional codes of rate 1/2 and uncoded performance 
comparison for a Ricean fading channel (a2/2cr=10) with diversity 
L=4, and broadband interference. 

55 



Pb 10 

10"4 

:■   Eb/N,.= 13.35 dB     ; 

.....; ; :-•■ i-.^k-fKlod-;  

:::::::;i 

';;;r;— 

10      o 3 6 9        12        15        18       21        24       27        30 

Eb/N, 

Figure 26. Optimum convolutional codes of rate 1/3 and uncoded performance 
comparison for a Rayleigh fading channel (a2/2cr=0) with diversity 
L=4, and partial-band interference. 
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Figure 27. Optimum convolutional codes of rate 1/2 and uncoded performance 
comparison for a Ricean fading channel (a2/2(T=5) with diversity 
L=4, and partial-band interference (y=0.1). 
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Figure 28. Optimum convolutional codes of rate 1/2 and uncoded performance 
comparison for a Ricean fading channel (a^oMO) with diversity 
L=4, and partial-band interference CpO.1). 
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Figure 29. Performance of a fast frequency-hopped BFSK receiver with self-normalization 
combining in a Rayleigh fading channel (a^o^O) with concatenated coding, 
diversity L=4, and broadband interference. 
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Figure 31. Performance of a fast frequency-hopped BFSK receiver with self-normalization 
combining in a Ricean fading channel (a2/2cr=5) with concatenated coding, 
diversity L=4, and broadband interference. 
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Figure 32. Performance of a fast frequency-hopped BFSK receiver with self-normalization 
combining in a Ricean fading channel (a2/2o2=5) with concatenated coding, 
diversity L=4, and broadband interference. 
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Figure 33. Performance of a fast frequency-hopped BFSK receiver with self-normalization 
combining in a Ricean fading channel (a2/2cs2=10) with concatenated coding, 
diversity L=4, and broadband interference. 
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Figure 34. Performance of a fast frequency-hopped BFSK receiver with self-normalization 
combining in a Ricean fading channel (a2/2cr=10) with concatenated coding, 
diversity L=4, and broadband interference. 

64 



0.1 

0.01 

10 

10 

10 r5 

10 r6 

10 r-7 

\     v"-"-""-".v.-v    Eb/N0=18dB 
\x     - v 

"fe    "W t:m- 

zziziji;3 

_\: -:::;: ::.N : :: ::-;:-::^: ^:' ;-:::.-~4:: 

 \ 
"(3T.23T 

lü 

>U15,U)  
::::§*MR£1£!: 
 :.x  

-T-\  

::::::::::::::::::::::s;:::::::f::::::::::; 
 x'"-:  
 • -Nd  

15 18 21 24 27 30 

E„/N, 

Figure 35. Performance comparison of concatenated coding and (31,15) Reed-Solomon 
code for a fast frequency-hopped BFSK receiver with self-normalization 
combining in a Rayleigh fading channel (a2/2a2'=G) with diversity L=4, and 
broadband interference. 
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Figure 36. Performance comparison of concatenated coding and (31,17) Reed-Solomon 
coding for a fast frequency-hopped BFSK receiver with self-normalization 
combining in a Ricean fading channel (a2/2o2=5) with diversity L=4, and 
broadband interference. 
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Figure 37. Performance comparison of concatenated coding and (31,17) Reed-Solomon 
coding for a fast frequency-hopped BFSK receiver with self-normalization 
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